Faculty of Mathematics and Natural Sciences Department of Physics auf deutsch

Project-Id-Version: PROJECT VERSION Report-Msgid-Bugs-To: EMAIL@ADDRESS POT-Creation-Date: 2010-05-17 09:04+0200 PO-Revision-Date: 2010-05-17 10:49+0200 Last-Translator: FULL NAME Language: en Language-Team: en Plural-Forms: nplurals=2; plural=(n != 1) MIME-Version: 1.0 Content-Type: text/plain; charset=utf-8 Content-Transfer-Encoding: 8bit Generated-By: Babel 2.6.0
winter sem. 2017
Last update: 19.11.19 11:04:51

WS 2018 SS 2018
WS 2017
WS 2016 SS 2017
Department of Physics
open chemistry
KVL / Klausuren / MAP 1st HS: 16.10  2nd HS: 11.12  sem.br.: 19.02  begin SS: 16.04

4020175050 Dynamical systems: nonlinear Dynamics  VVZ 

Tue 9-11
weekly NEW 14 1'11 (24) Michael Zaks
Tue 15-17
14-day NEW 15 3'101 (24) Michael Zaks

Digital- & Präsenz-basierter Kurs

classroom language
The course is concepted as an introduction into the
problematics, ideas and methods of the modern nonlinear dynamics. The underlying mathematical formalism will be illustrated by examples from applications: fluid dynamics, neuroscience, populational dynamics. The students will learn how to determine the stability of steady and oscillatory states, and how to deal with chaotic behavior. The acquired knowledge can be later applied to various fields of the modern natural science.
Vordiplom in Physik; Bachelorarbeit in der Physik
structure / topics / contents
* Dynamical systems: discrete and continuous, dissipative and Hamiltonian.
* Various definitions of stability and their physical meaning.
* Local bifurcations of equilibria and periodic solutions. Poincare-mapping. Global bifurcations.
* Bifurcational scenarios and universal transitions to chaos.
* Chaotic attractors and their fractal properties.
* Lyapunov exponents
* Introduction into the KAM-theory and the Hamiltonian chaos.
* Examples from fluid mechanics, population models
(ecology), neurodynamics.
assigned modules
amount, credit points; Exam / major course assessment
3 SWS, 5 SP/ECTS (Arbeitsanteil im Modul für diese Lehrveranstaltung, nicht verbindlich)
Written exam
PD Dr. Michael Zaks (3'410)
Argyris, Faust, Haase, Friedrich. Die Erforschung des Chaos. Springer
Glendinning. Stability, Instability and Chaos. Cambridge University Press
Ott. Chaos in Dynamical Systems. Cambridge University Press
Anfragen/Probleme executed on vlvz1 © IRZ Physik, Version 2019.1.1 vom 24.09.2019 Fullscreen