Faculty of Mathematics and Natural Sciences Department of Physics auf deutsch


Veranstaltungen mit geplanten Räumen finden i.a. in Präsenz statt.
Digitale Angebote sind optional.

winter sem. 2021
Last update: 30.05.22 09:03:09



_
WS 2022 SS 2022
WS 2021
WS 2020 SS 2021
Department of Physics
open chemistry
KVL / Klausuren / MAP 1st HS: 18.10  2nd HS: 13.12  sem.br.: 21.02  begin SS: 17.04

4020215134 Introduction to Integrability  VVZ 

VL
Wed 9-11
weekly ZGW 2 1.221 (36) Florian Löbbert
UE
Wed 12-13
weekly ZGW 2 1.221 (36) Florian Löbbert
VL
Wed 11-12
weekly ZGW 2 1.221 (36) Florian Löbbert

Präsenzkurs

classroom language
DE
aims
Integrability is a property/symmetry of special physical models which connects different physical and mathematical fields. The goal of this course is to gain an overview over the different facets and applications of integrability and to get to know interesting physical problems.
requirements
Knowledge of Quantum Mechanics. Knowledge of statistical physics and (quantum) field theory is useful.
structure / topics / contents
OVERVIEW
+ Integrability as an extended symmetry of physical models
+ exactly solvable systems
+ classical integrability
+ quantum integrability
CONCEPTS & METHODS
+ Lax pair
+ inverse scattering method
+ R-matrix
+ Yang-Baxter equation
+ factorized scattering
+ Bethe ansatz
+ nonlocal symmetries
+ quantum groups
+ Yangian symmetry
MODELS
+ classical integrable systems
+ spin chains
+ integrable field theory
+ AdS/CFT duality
assigned modules
P25.1.a P25.1.b
amount, credit points; Exam / major course assessment
4 SWS, 6 SP/ECTS (Arbeitsanteil im Modul für diese Lehrveranstaltung, nicht verbindlich)
Oral exam
other
The course will be taught in English.
contact
Florian Loebbert (IRIS Haus 2.25)
literature
B. Sutherland. Beautiful Models.
O. Babelon, D. Bernard, M. Talon. Introduction to Classical Integrable Systems.
P. Dorey. Exact S-matrices. www.http://arxiv.org/abs/hep-th/9810026
L. Faddeev. How algebraic Bethe ansatz works for integrble Model. www.http://arxiv.org/abs/hep-th/9605187
quod vide:
http://qft.physik.hu-berlin.de/teaching/
Anfragen/Probleme executed on vlvz1 © IRZ Physik, Version 2019.1.1 vom 24.09.2019 Fullscreen