SS 2012 WS 2011
SS 2011
SS 2010 WS 2010
Department of Physics
open chemistry
KVL / Klausuren / MAP 1st HS: 11.04  2nd HS: 30.05  sem.br.: 17.07  begin WS: 16.10

4020110081 On-Shell methods in gauge theory scattering amplitudes  VVZ 

VL
Thu 9-11
weekly NEW 15 2'101 (24) Jan Plefka
UE
Fri 9-11
weekly NEW 15 2'101 (24) Jan Plefka

Digital- & Präsenz-basierter Kurs

Requirements
Quantum Field Theory I
Structure / topics / contents
These lectures introduce into modern efficient techniques
for the computation of scattering amplitudes in gauge theories
using generalized unitarity methods. The traditional method using
Feyman diagrams employs off-shell and gauge variant expressions
at intermediate stages of the computation leading to an immense
increase in complexity, whereas the final results are often rather
compact. In these lectures a certain emphasis will be put on the
case of maximally supersymmetric (N=4) gauge theory, but applications
to QCD will also be discussed.

Incomplete list of topics: Spinor helicity formalism, planar limit, symmetries of
tree-level amplitudes, BCFW recursion, super-amplitudes, all tree-level amplitudes in massless
QCD, dual conformal and Yangian symmetry, one-loop basis, IR divergencies,
scattering amplitudes and light-like WIlson loops, recent developments.
Assigned modules
P23.1.2a P23.1 GK1504 1
Amount, credit points; Exam / major course assessment
5 SWS, 5 SP/ECTS (Arbeitsanteil im Modul für diese Lehrveranstaltung, nicht verbindlich)
Oral exam for the completion of module P23.1.2a possible.
Contact
Prof. Dr. Jan Plefka
Literature
L. J. Dixon. Calculating scattering amplitudes efficiently. TASI lectures, hep-ph/9601359
L. F. Alday, R. Roiban. cattering Amplitudes, Wilson Loops and the String/Gauge Theory Correspondence. hys. Rept. 468, 153-211 (2008). [arXiv:0807.1889 [hep-th]]
J.M. Henn. Duality between Wilson loops and gluon amplitudes. Fortsch. Phys. 57, 729-822 (2009). [arXiv:0903.0522 [hep-th]]
J. Drummond. Hidden Simpicity of Gauge Theory Amplitudes. arxiv: 1010.2418
executed on vlvz1 © IRZ Physik, Version 2019.1.1 vom 24.09.2019 Fullscreen