SS 2012 WS 2011
SS 2011
SS 2010 WS 2010
Department of Physics
open chemistry
KVL / Klausuren / MAP 1st HS: 11.04  2nd HS: 30.05 17.07  begin WS: 16.10

4020110133 Functional integrals in quantum physics and statistics  VVZ 

Fri 15-17
weekly NEW 14 0'05 (103) Michael Müller-Preußker
Wed 13-15
14-day NEW 14 1'15 (60) Michael Müller-Preußker

Digital- & Präsenz-basierter Kurs

Knowledge and ability to work with path integral techniques in quantum mechanics, quantum field theory and in statistical physics
Good knowledge of theoretical physics, in particular of quantum mechanics and statistical physics.
Structure / topics / contents
1. Introduction to path integrals in quantum mechanics.
2. How to compute path integrals
3. Semiclassical approximation: the anharmonic oscillator
4. Functional integrals with coherent states: Bose and Fermi case
5. Quantum statistics and functional integrals: the Hubbard model
6. Short introduction to field theories
7. Functional quantization: scalar and fermionic fields
8. Perturbation theory and Feynman diagrams
9. Quantizing gauge field theories: the Faddeev-Popov trick
Assigned modules
P23.1.2a P22 P23.1 GK1504 1
Amount, credit points; Exam / major course assessment
3 SWS, 5 SP/ECTS (Arbeitsanteil im Modul für diese Lehrveranstaltung, nicht verbindlich)
Credit points will be given for solving exercises. Final module examination for module P22.2 (Selected Chapters of Theoretical Physics): oral or written examination (to be decided in the beginning of the course)
Prof. M. Müller-Preussker, room 2'208, phone: 030-2093-7859, -7630
L.S. Schulman. Techniques and Applications of Path Integration. Wiley, New York
H. Kleinert. Path Integrals in Quantum Mechanics, Statistics and Polymer Physics. World Scientific
G. Roepstorff. Path Integral Approach to Quantum Physics. Springer
V. Popov. Functional Integrals in Quantum Field Theory and Statistical Physics. Reidel
P. Ramond. ield Theory: a Modern Primer. Benjamin/Cummings
M.E. Peskin, D.V. Schroeder. An Introduction to Quantum Field Theory. Addison-Wesley
T.-P. Cheng, L.-F. Li. Gauge Theory of Elementary Particles. Clarendon Press Oxford
L.H. Ryder. Quantum Field Theory. University Press Cambridge
Quod vide:
executed on vlvz1 © IRZ Physik, Version 2019.1.1 vom 24.09.2019 Fullscreen