SS 2015 WS 2014
SS 2014
SS 2013 WS 2013
Department of Physics
open chemistry
KVL / Klausuren / MAP 1st HS: 14.04  2nd HS: 09.06  sem.br.: 21.07  begin WS: 12.10

4020140095 Neural Noise and Neural Signals  VVZ 

VL
Wed 11-13
weekly nV or digital (0) Benjamin Lindner
UE
Wed 9-11
14-day nV or digital (0) Benjamin Lindner

Digital- & Präsenz-basierter Kurs

classroom language
DE
aims
Aspects of randomness in neural activity and information processing can be successfully analyzed in terms by stochastic models. This course gives an introduction to the models and measures of neural noise (or 'variability' as it is more often called) and should enable the student to follow the current literature on the subject on his/her own. To this end, some key concepts from nonlinear dynamics, stochastic processes, and information theory are outlined. Then a number of basic problems (see below) is addressed; here, the main emphasis is given to analytically tractable models, but simulation techniques are explained as well. As an outlook some more involved problems (ISI statistics under correlated ('colored') noise, with subthreshold oscillations, or with adaptation, stimulus-induced correlations) are sketched at the end of the course.
structure / topics / contents
Spontaneous activity and information transmission in models of single nerve cells
Ueberblick zu theoretischen Modellen der Neurophysik, die die spontane Aktivitaet und Signaltransmission in Nervenzellen beschreiben.

Contents include: Key concepts from nonlinear dynamics (bifurcations, fixed points, manifolds, limit cycle), stochastic processes (Langevin and Fokker-Planck equations, Master equation, linear response theory), information theory (mutual information and its lower and upper bounds), point processes (Poisson process; renewal vs. nonrenewal point process). Neural noise sources and how they enter different neuron models, the diffusion approximation of synaptic input or channel fluctuations by a Gaussian noise, measures of spike train and interval variability and their interrelation, Poisson spike train: entropy & information content, one-dimensional stochastic integrate-and-fire (IF) neurons: spontaneous activity, response to weak stimuli & information transfer, different forms of stochastic resonance in single neurons and neuronal populations, multidimensional IF models: subthreshold resonances, synaptic filtering & spike-frequency adaptation, effect of nonrenewal behavior of the spontaneous activity on the information transfer, outlook: stimulus-driven correlations; networks of stochastic neurons.
assigned modules
P23.3.2a P23.3
amount, credit points; Exam / major course assessment
3 SWS, 5 SP/ECTS (Arbeitsanteil im Modul für diese Lehrveranstaltung, nicht verbindlich)
muendliche Pruefung
other
Die Veranstaltung findet im Hörsaal im Haus 6, Philippstr.13 statt.
quod vide:
http://people.physik.hu-berlin.de/~neurophys/neusig/index.html
Anfragen/Probleme executed on vlvz1 © IRZ Physik, Version 2019.1.1 vom 24.09.2019 Fullscreen